LABORATORY MANUAL
SOC V — INTRUSION DETECTION SYSTEMS

(20CSC610)
For
IV Year I Sem B. Tech

Academic Year 2023-24

Prepared By

Kuppam Johari

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CYBER SECURITY

MADANAPALLE INSTITUTE OF TECHNOLGY & SCIENCE
(UGC - AUTONOMOUS)
(Affiliated to JNTUA, Ananthapuramu)
Accredited by NBA, Approved by AICTE, New Delhi)
AN ISO 9001:2008 Certified Institution
P. B. No: 14, Angallu, Madanapalle — 517325
2023-2024

UNIT -1
Experiment No: 1

Configure a virtual network using tools like VirtualBox or VMware.
Aim: Configure a virtual network using tools like VirtualBox or VMware.
Description:

Configuring a virtual network provides flexibility and control over how virtual machines connect to
each other and the external world. This is particularly useful for development, testing, and learning
environments, as it allows you to simulate a variety of networking scenarios without needing a physical

network infrastructure.

There are 4 types of networking scenarios.
Network Address Translation (NAT):

NAT is often used when you want the virtual machine to have internet access but don't necessarily
need direct visibility of the virtual machine from other devices on your local network. It's suitable for

scenarios where the VM needs outbound connectivity.
Bridged Networking:

Bridged networking is useful when you want your virtual machine to have its own distinct IP address
on the local network, allowing other devices on the network to directly communicate with it. This is
commonly used for scenarios where the virtual machine should be treated like a separate machine within

your network.
Host-Only Networking:

Host-Only networking is employed when you want the virtual machine to be isolated from external
networks while still allowing communication with the host machine. This can be useful for development and
testing environments where you need to keep the virtual machine and host machine isolated from other

network resources.
NOTE: You can customize this network configuration according to the use case.

Required tools.

e VMware
e Operating System (any Linux Distribution)

Configure a virtual network using VMware.
Algorithm:

1. Open VMware: Launch the VMware application.

B VMware Workstation -]

File Edit View VM Tabs Help IN ==}

{7 Home

WORKSTATION PRO 17

®) P

Create a New Open a Virtual Connect to a
Virtual Machine Machine Remoate Server

vmw

2. Create a Virtual Machine: If you haven't already created a virtual machine, you can create one by
following the below link.

“ https://drive.google.com/file/d/1Z1cmi27wmgVZTa0PCnGwEHCHANdAU3US/view?usp=sharing ”

(98]

Configure Network Settings: After creating the virtual machine, select it and click on the "Settings'
button.
4. Network Adapter Settings: In the Settings window, go to the "Network" section. Here, you'll see

one or more network adapters. You can choose from several adapter types, such as NAT, Bridged,

Host-Only, etc.

N

Adjust Adapter Settings: Depending on the adapter type you choose; you may need to adjust

additional settings. For example, in Bridged mode, you might need to select the network adapter that

your host machine uses.

6. Save Settings: Once you've configured the network settings as desired, click "OK" to save the
changes.

7. Start the Virtual Machine: Start the virtual machine. It should now be able to connect to the

network according to the settings you've configured.

Click the below link to watch the process as followed above steps.

“ https://drive.google.com/file/d/19Ral2vDkeRwusmFQOm&8y9ulSpJazl w9d/view?usp=sharing ”

https://drive.google.com/file/d/1Z1cmi27wmgVZTa0PCnGwEHCHANdAU3US/view?usp=sharing%20
https://drive.google.com/file/d/19RaI2vDkgRwusmFQ0m8y9u1SpJaz1w9d/view?usp=sharing

Output:

I R

— Virtual Machine Settings

rty

Hardware QOptions

Device

Memary
EE:]EPrncessors
_\Hard Disk (SCSI)
(=) CD/DVD 2 (SATA)
(=) CD/DVD (SATA)

Summary
4GB

2

20 GB

Using file H:\OS files\ubuntu-...

Using file autoinst.iso

Fluppy Using file autoinst.flp
Eoinetwork Adapter HAT

[“— USB Controller Present

cl) Sound card Auto detect

{— Printer Present

[:]Display Auto detect

Video source:

Add... Remove

Device status
Connected
Connect at power on

Metwork connection
() Bridged: Connected directly to the physical network

Replicate physical network connection state

© NAT: Used to share the host's IP address
") Host-only: A private network shared with the host

() Custom: Specific virtual network
VMnet0

() LAN segment:

LAN Segments...

Cancel

Advanced...

Help

“ https://drive.soogle.com/drive/folders/1rt-qFrAc0SevlIKEYIIdwlEglVENRI70f?usp=sharing *

Result: Thus, to Configure a virtual network using tools like VirtualBox or VMware is successfully
completed.

https://drive.google.com/drive/folders/1rt-qFrAc0SevlKEYlldwlEglV8NRI70f?usp=sharing

Experiment No: 2

Deploy an IDS System such as Snort or Suricata, within the virtual network.
Aim: Deploy an IDS System such as Snort or Suricata, within the virtual network.
Description:

Deploying an IDS within a virtual network helps you proactively monitor and defend your network
against potential threats, providing an additional layer of security to your virtual environment. It's important
to keep the IDS system up to date and continuously adjust its rules and configurations based on the evolving

threat landscape.
Tools Required:

e Virtual Machine’s (Which we are created in exp)
e Snort Tool
e Ping, Zenmap (nmap) Tool & Hping3

e Vim editor

Algorithm:
Installation steps for Snort:

Video: “https://drive.google.com/file/d/10e9qyBnnum3yCiT8w71Kuj4 0jAy-ysC/view?usp=sharing”

e Sudo apt-get install snort -y

B Ubuntu (IDS) - VMware Workstation

File Edit View VM Tabs Help || - & O)

) Home ([Ubuntu (IDS)

] Terminal Aug22 20:54
Johari@Joharl-virtual-machine: ~

1§ ifconfig
mtu 1500
broadcast 10.10.10.255
inet6 fe8@::7cf ed42:54df:241a prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:fa:45:8f txqueuelen 1000 (Ethernet)
RX packets 246 bytes 239212 (239.2 KB)
RX errors ® dropped ® overruns © frame ©
TX packets 216 bytes 23012 (23.0 KB)
TX errors 6 dropped 0 overruns 6 carrier 8 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 e scopeid Bx1
loop txqueuele (Local Loopbacl
RX packets 154 bytes 14319 (14.3 KB)
RX errors 6 dropped 0 overruns 6 frame ©
packets 154 bytes 14319 (14.3 KB)
TX errors 8 dropped © overruns © carrier 8 collisions 0

:$ sudo apt-get install snort -y
[sudo] password for joha
Reading package list: Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
libdagz libdumbnet1 libluajit-5.1-2 1ibluajit-5.1-common libnetfilter-queuel
oinkmaster snort-common snort-common-libraries snort-rules-default
suggested packages:
snort-doc
The following NEW packages will be installed:
libdaq2 libdumbnet1 libluajit-5.1-2 1ibluajit-5.1-cemmon libnetfilter-queuel
otnkmaster snort snort-common snort-common-libraries snort-rules-default
o upgraded, 10 newly installed, @ to remove and 2 not upgraded.
Need to get 2,349 kB of archives.
this operation, 16.6 M8 of additional disk space will be used.
1 .com/ubuntu jammy/universe ands4 libluajit-5.1-common all 2.1.0-beta3+dfsg-6 [44.3 kB]
.com/ubuntu jammy/universe and64 libluajit-5.1-2 amd64 2.1.6-beta3+dfsg- X
.com/ubuntu jammy/universe amds4 snort-common-libraries amde4 2.9.15.1-6
.com/ubuntu jammy/universe amds4 snort-rules-default all 2.9.15
.com/ubuntu jammy/universe ands4 snort-common all 2.9.15.1-6buildl [49.7 k8]
.com/ubuntu jammy/universe amd64 libdumbnet1 amd64 1.12-16 [27.8 kB]
.com/ubuntu jammy/universe andsd libnetfilter-queuel amd64 1.0.5-2 [14.4 kB]
.com/ubuntu jammy/universe ands4 libdagz amds4 2.0.7-5 [83.5 kB]
.com/ubuntu jammy/universe and64 snort amd64 2.9.15.1-6buildl [792 k8]
2o Lol

o PP

https://drive.google.com/file/d/1oe9qyBnnum3yCiT8w71Kuj4_0jAy-ysC/view?usp=sharing

e Enter ip address 10.10.10.12/24
e Tocheckenteripas
e And hit enter.

e Snort --version
Configuration of Snort:
e [s-al /etc/snort

‘ 8 Ubuntu (IDS) - VMware Workstation
file Edit View VM Tabs Help [~ & O S OE O b -

{7} Home [} ubuntu (IDS)

Activities (=] Terminal

Preparing to unpack .../B-snort_2.9.15.1-6buildl_amd64.deb ...
Unpacking snort (2.9.15.1-6build1)
Selecting previously unselected package oinkmaster.
Preparing to unpack .../9-oinkmaster_2.0-4.1 all.deb ...
Unpacking oinkmaster (2.0-4.1) ...
Setting up oinkmaster (2.0-4.1) ...
Setting up snort-common (2.9.15.1-6buildl) ...
Setting up libluajit-5.1-common (2.1.0~beta3+dfsg-6)
Setting up libnetfilter-queuel:amd64 (1.8.5-2)
Setting up libdumbneti:amd64 (1.12-10) ...
Setting up snort-rules-default (2.9.15.1-6build1l)
Setting up libluajit-5.1-2:amd64 (2.1.0~beta3+dfsg-6)
Setting up libdagq2 (2.8.7-5)
Setting up snort-common-libraries (2.9.15.1-6build1l)
Setting up snort (2.9.15.1-6buildl)
Snort configuration: interface default not set, using 'ens33'
Processing triggers for man-db (2.10.2-1) ...
Processing triggers for libc-bin (2.35-@ubuntu3.1)

H sudo ip link set ens33 promisc on

man snort
1s -al fetc/snort
total 376
drwxr-xr-x 3 root root 4096 Aug 22 20:46
drwxr-xr-x 131 root root 12288 Aug 22 20:46
-TW-r--r-- 1 root root 1281 Dec 3 2819 attribute_table.dtd
-TW-r--r-- root root 3757 Dec 3 2019 classification.config
-TW-r--r-- root root 82469 Dec 3 2021 community-sid-msg.map
-TW-r--r-- root root 23657 Dec 3 2019 file_magic.conf
-rW-r--r-- root root 32789 Dec 3 2019 gen-msg.map
-TW-r--r-- root root 687 Dec 3 2019 reference.config
drwxr-xr root root 4096 Aug 22 20:46
=rw-r-- root snort 29775 Dec 3 2821 snort.conf
root root 806 Aug 22 20:46 snort.debian.conf
root root 2335 Dec 3 2019 threshold.conf
root root 160606 Dec 3 2019 unicode.map
H sudo vim fetc/snort/snort.conf
sudo snort -T -i ens33 -c fetc/snort/snort.conf

-rW-r--r--
=rW=r=-r--

e s e

Running in Test mode

--== Initializing Snort ==--
Initializing Output Plugins!
Initializing Preprocessors!
Initializing Plug-ins!

e sudo vim /etc/snort/snort.conf

e change under step 1 ipvar HOME NET any to ipvar HOME NET 10.10.10.12/24

Note: refer the video to do.

Checking Configuration to confirm no errors:

e sudo snort -T -i ensp -c /etc/snort/snort.conf

‘ B Ubuntu (DS) - VMware Workstation
File Edit View VWM Tabs Help | |l ~ | & (D T R A VAR

() Home [} ubuntu (IDS)

Aug 22 20:53
Jjohari@johari-virtual-machine: ~

| Match States
| Memory (MB)
Patterns
Match Lists
DFA
1 byte states : 1.
2 byte states :
4 byte states :

[Number of patterns truncated to 20 byte:
pcap DAQ configured to passive.
Acquiring network traffic from "ens33".

Initialization Complete ==

-*> Snortl <*-

Version 2.9.15.1 GRE (Build 15125)

By Martin Roesch & The Snort Team: http://www.snort.org/contact#team
Copyright (C) 2014-2019 Cisco and/or its affiliates. All rights reserved.
Copyright (€) 1998-2013 Sourcefire, Inc., et al.

Using libpcap version 1.18.1 (with TPACKET_V3)

Using PCRE version: 8.39 2016-06-14

Using ZLIB version: 1.2.11

Rules Engine: SF_SNORT_DETECTION_ENGINE Version 3.1 <Build 1>
Preprocessor : SF_DCERPC2 Version 1.8 <Build 3>
Preprocessor j : SF_SMTP Version 1.1 <Build 9>
Preprocessor j F_DNP3 Version 1.1 <Build
Preprocessor je F_FTPTELNET Version 1.2 <Build 13>
Preprocessor je F_REPUTATION Version 1.1 <Build 1>
Preprocessor je IP Version 1. <Build 1=
Preprocessor je _ Version 1.1 <Build 4>
Preprocessor j | S Version 1.1 <Build
Preprocessor Obj F_POP Version 1.8 <Build 1>
Preprocessor j DF Version 1.1 <Build 1>
Preprocessor j : appid version 1.1 <Build 5>
Preprocessor Obje SF_SSLPP Version 1.1 <Build 4>
Preprocessor je 2 Version 1.1 <Build 3>
Preprocessor je F_IMAP Version 1.0 <Build 1>
Preprocessor Object: SF_GTP Version 1.1 <Build 1>

Snort successfully validated the co
Snort exiting

Rules:

e alert icmp any any -> SHOME NET any (msg:"Ping Detected"; sid:100001; rev:1;)
e alert icmp any any -> SHOME NET 22 (msg:"SSH Detected"; sid:100002; rev:1;)

Testing Snort using ping, Zenmap & Hping3:

e ping 10.10.10.130
e ssh username@ipaddress

Video 2: “https://drive.google.com/file/d/1xsvV-VeljOdvJFFRKErD ZikrEi9 7fT/view?usp=sharing”

https://drive.google.com/file/d/1xsvV-VeIjQdvJFFRkErD_ZikrEi9_7fT/view?usp=sharing

kali@kali: ~

File Actions Edit View Help

o~

10.10.10.130
PING 10.10.10.130 (10.10.10.
64 bytes from 10.10.18.138:

of data.
time=8.746 ms

13@) 56(84) bytes
icmp_seqg=1 ttl=64

64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

18.18.1@.138:
18.16.10.136:
18.16.10.138:
18.18.10.138:
18.18.10.138:
18.1@.1@.138:
18.16.10.136:
18.16.10.138:
18.18.10.138:
18.18.10.138:
18.18.10.138:
18.16.10.136:
18.16.10.138:
18.18.10.138:
18.18.10.138:
18.1@.1@.138:

icmp_seq=2
icmp_seqg=3
icmp_seq=4
icmp_seq=5
icmp_seq=6
icmp_seq=7
icmp_seq=8
icmp_seq=9
icmp_seq=1@
icmp_seqg=11
icmp_seqg=12
icmp_seq=13
icmp_seq=14
icmp_seq=15
icmp_seqg=16
icmp_seqg=17

ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64
ttl=64

time=0.839 ms
time=1.60 ms
time=2.58 ms
time=2.91 ms
time=8.995 ms
time=1.0@ ms
time=0.980 ms
time=1.23 ms
time=0.703 ms
time=0.675 ms
time=2.47 ms
time=8.959 ms
time=0.722 ms
time=1.15 ms
time=0.852 ms
time=@.798 ms

i1
ME
— 10.10.18.130 ping statistics —

18 packets transmitted, 18 received, 8% packet
rtt min/ave/max/mdev = 0.675/1.229/2.905/0.664

bytes from 18.10.108.130: icmp_seg=18 ttl=64 time=1.81 ms

loss, time 1713@ms
ms

Activities] Terminal

)

Aug22 21:40

M~ Jjohari@johari-virtual-machine: ~

:-$ sudo snort -q -1 fvar/log/snort -i ens33 -A console -c fetc/snort/snort.conf
[sudo] password for jehari:
08/22-21:40:38.652982 [**]
08/22-21:40:38.652982 [**]
08/22-21:40:38.652982 [**]
08/22-21:40:38.652982 [**]
08/22-21:40:38.653180 [**]
08/22-21:40:38.653180 [**]
08/22-21:40:38.653180 [**]
08/22-21:40:39.643773 [**]
08/22-21:40:39.643773 [**]
08/22-21:40:39.643773 [**]
08/22-21:48:39.643773 [**]
08/22-21:40:39.643808 [**]
08/22-21:40:39.643808 [**]
08/22-21:40:39.643808 [**]
08/22-21:40:40.645069 [**]
08/22-21:40:40.645069 [**]
645069
645069
645088
40.645088
40.645088
41.648962
41.648962
41.648962
41.648962
41.648991
41.648991
41.648991

:366:7]
:100002:
:100001:
:384:5]
:100002:
:100001:
:408:5]
1366:7]
:100002:
:100001:
:384:5]
:100002:
:100001:
:408:5]
1366:7]
:100002:
:100001:
:384:5]
:100002:
:100001:
:408:5]
:366:7]
:100002:
:100001:
:384:5]
:100002:
:100001:
488:5]

ICMP PING *NIX [**] [Classification: Misc activity] [Priority: 3] {ICMP} 10.10.10.129 -> 10.10.10.130
1] Ping Detected [**] [Priority: @] {ICMP} 10.10.10.129 -> 10.10.10.130

1] Ping Detected [**] [Priority: @] {ICMP} 10.10.10.129 -> 10.10.10.130

ICMP PING [**] [Classification: Misc activity] [Prierity: 3] {ICMP} 16.10.10.129 -> 10.10.10.130

1] Ping Detected [**] [Priority: @] {ICMP} 18.10.16.130 -> 10.10.160.129

1] Ping Detected [**] [Priority: @] {ICMP} 16.10.16.130 -> 10.10.10.129

ICMP Echo Reply [**] [Classification: Misc activity] [Priority: 3] {ICMP} 10.16.10.130 -> 10.16.160.129
ICMP PING *NIX [**] [Classification: Misc activity] [Prierity: 3] {ICMP} 16.10.10.129 -> 10.10.10.130
1] Ping Detected [**] [Priority: @] {ICMP} 10.10.16.129 -> 10.10.160.130

1] Ping Detected [**] [Priority: @] {ICMP} 16.10.16.129 -> 10.10.10.130

ICMP PING [**] [Classification: Misc activity] [Priority: 3] {ICMP} 16.10.10.129 -> 10.16.16.130

1] Ping Detected [**] [Priority: @] {ICMP} 10.10.10.130 -> 10.10.10.129

1] Ping Detected [**] [Priority: @] {ICMP} 10.10.16.130 -> 10.10.160.129

ICMP Echo Reply [**] [Classification: Misc activity] [Priority: 3] {ICMP} 10.16.16.130 -> 10.10.10.129
ICMP PING *NIX [**] [Classification: Misc activity] [Priority: 3] {ICMP} 16.10.10.129 -> 10.16.10.130
1] Ping Detected [**] [Priority: @] {ICMP} 10.10.10.129 -> 10.10.10.130

1] Ping Detected [**] [Priority: @] {ICMP} 10.10.10.129 -> 10.10.10.130

ICMP PING [**] [Classification: Misc activity] [Priority: 3] {ICMP} 10.10.10.129 -> 10.10.16.130

1] Ping Detected [**] [Priority: 8] {ICMP} 10.10.16.130 -> 10.10.10.129

1] Ping Detected [**] [Priority: @] {ICMP} 10.10.10.130 -> 10.10.10.129

ICMP Echo Reply [**] [Classification: Misc activity] [Priority: 3] {ICMP} 10.16.10.130 -> 10.10.10.129
ICMP PING *NIX [**] [Classification: Misc activity] [Priority: 3] {ICMP} 10.10.10.129 -> 10.10.10.130
1] Ping Detected [**] [Priority: @] {ICMP} 16.10.16.129 -> 10.10.10.130

1] Ping Detected [**] [Priority: @] {ICMP} 10.10.10.129 -> 10.10.10.130

ICMP PING [**] [Classification: Misc activity] [Prierity: 3] {ICMP} 16.10.10.129 -> 10.10.10.130

1] Ping Detected [**] [Priority: @] {ICMP} 18.10.16.130 -> 10.10.160.129

1] Ping Detected [**] [Priority: @] {ICMP} 16.10.16.130 -> 10.10.10.129

ICMP Echo Reply [**] [Classification: Misc activity] [Priority: 3] {ICMP} 10.16.10.130 -> 10.16.160.129

08/22-
08/22-
08/22-
08/22-
08/22-
08/22-
08/22-
08/22-
08/22-
08/22-
08/22-
88/22-

21:
21:
2418
21:
21:
21:
21:
21:
21:
21:
21:
2418

40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:
40:

40.
40.
40.

[**]
[**]
[**]
[**]
[**]
[**]
[**]
[**]
[**]
[**]
[**]
[**]

Video source:

“ https://drive.google.com/drive/folders/1rt-qFrAc0SevIKEYIIdwlEglVENRI70f?us

Result: Thus, to deploy an IDS System such as Snort or Suricata, within the virtual network is successfully
Executed.

https://drive.google.com/drive/folders/1rt-qFrAc0SevlKEYlldwlEglV8NRI70f?usp=sharing

UNIT -2
Experiment No: 1
Setup a test network using virtual machines or physical devices.
Aim: Setup a test network using virtual machines or physical devices.
Description:

Setting a test network provides flexibility and control over how virtual machines connect to each
other and the external world. This is particularly useful for development, testing, and learning environments,
as it allows you to simulate a variety of networking scenarios without needing a physical network

infrastructure.
Network Address Translation (NAT):

NAT is often used when you want the virtual machine to have internet access but don't necessarily
need direct visibility of the virtual machine from other devices on your local network. It's suitable for

scenarios where the VM needs outbound connectivity.
Bridged Networking:

Bridged networking is useful when you want your virtual machine to have its own distinct IP address
on the local network, allowing other devices on the network to directly communicate with it. This is
commonly used for scenarios where the virtual machine should be treated like a separate machine within

your network.
Host-Only Networking:

Host-Only networking is employed when you want the virtual machine to be isolated from external
networks while still allowing communication with the host machine. This can be useful for development and
testing environments where you need to keep the virtual machine and host machine isolated from other

network resources.
NOTE: You can customize this network configuration according to the use case.

Required tools.

e VMware
e Operating System (any Linux Distribution)

Setting a virtual network using VMware.
Algorithm:

8. Open VMware: Launch the VMware application.

B VMware Workstation -]

File Edit View VM Tabs Help IN ==}

Home.

WORKSTATION PRO 17

®) P

Create a New Open a Virtual Connect to a
Virtual Machine Machine Remoate Server

vmw

9. Create a Virtual Machine: If you haven't already created a virtual machine, you can create one by
following the below link.

“ https://drive.google.com/file/d/1Z1cmi27wmgVZTa0PCnGwEHCHANdAU3US/view?usp=sharing ”

10. Configure Network Settings: After creating the virtual machine, select it and click on the "Settings'
button.
11. Network Adapter Settings: In the Settings window, go to the "Network" section. Here, you'll see

one or more network adapters. You can choose from several adapter types, such as NAT, Bridged,
Host-Only, etc.

12. Adjust Adapter Settings: Depending on the adapter type you choose; you may need to adjust
additional settings. For example, in Bridged mode, you might need to select the network adapter that
your host machine uses.

13. Save Settings: Once you've configured the network settings as desired, click "OK" to save the
changes.

14. Start the Virtual Machine: Start the virtual machine. It should now be able to connect to the

network according to the settings you've configured.

Click the below link to watch the process as followed above steps.

“ https://drive.google.com/file/d/19Ral2vDkeRwusmFQOm&8y9ulSpJazl w9d/view?usp=sharing ”

https://drive.google.com/file/d/1Z1cmi27wmgVZTa0PCnGwEHCHANdAU3US/view?usp=sharing%20
https://drive.google.com/file/d/19RaI2vDkgRwusmFQ0m8y9u1SpJaz1w9d/view?usp=sharing

Output:

I R

— Virtual Machine Settings

Hardware QOptions

Device Summary Device status

=] Memory 4GB Connected

§E:]§Prnceggor5 2 Connect at power on

_\Hard Disk (SCSI) 20 GB

() CD/DVD 2 (SATA) Using file H:\0S files\ubuntu-... Network connection

(=) CD/DVD (SATA) Using file autoinst.iso () Bridged: Connected directly to the physical network

| . .

FlUPF‘Y Using file autoinst.flp Replicate physical network connection state

Eoinetwork Adapter HAT

[T USB Controller Present © NAT: Used to share the host's IP address

) Sound Card Auto detect) Host-only: A private network shared with the host

=4 Printer Present () Custom: Specific virtual network
E .

[:]Dlsplay Auto detect VMneti
a =

() LAN segment:
a
LAN Segments... Advanced...
2q
2q
ry
Add... Remove
Concel | help

Video source:

“ https://drive.soogle.com/drive/folders/1rt-qFrAc0SevlIKEYIIdwlEglVENRI70f?usp=sharing *

Result: Thus, to Setup a test network using virtual machines or physical devices is successfully completed.

https://drive.google.com/drive/folders/1rt-qFrAc0SevlKEYlldwlEglV8NRI70f?usp=sharing

Experiment No: 2

Use Wireshark or tcpdump to capture network traffic on the test network.
Aim: Use Wireshark or tcpdump to capture network traffic on the test network.

Description:

1. Wireshark: Wireshark is a graphical network protocol analyzer that allows users to capture and
inspect network traffic in real-time.
2. tepdump: tcpdump is a command-line packet capture tool for Unix-like operating systems that

captures network packets on a specified network interface.

Tools Required:

e Wireshark
e Tcpdump

Algorithm:

Using Wireshark:

1. Install Wireshark: If you don't have Wireshark installed, download and install it from the official

website: https://www.wireshark.org/download.html

2. Launch Wireshark: Open Wireshark with administrative privileges. You may need to run it as an
administrator or use sudo on Linux systems.
3. Select Capture Interface:
e Go to "Capture" in the top menu & choose the network interface you want to capture traffic from.
4. Start Capturing:
e Click the "Start" button to begin capturing network traffic.
e You can apply filters to capture specific traffic (e.g., filter by IP address, port, protocol).
5. Stop Capturing:
e Click the "Stop" button when you want to stop capturing.
6. Analyze Traffic:
e After stopping the capture, you can analyze the captured packets in the Wireshark interface.
7. Save the Capture:

e Ifneeded, you can save the capture as a .pcap or .pcapng file for further analysis.
Video source:

https://drive.google.com/file/d/1bSkOTBSYLwg-tFdEUdtDX DtuQCznHwO0/view?usp=drive link

https://www.wireshark.org/download.html
https://drive.google.com/file/d/1b5kOTBSYLwg-tFdEUdtDX_DtuQCznHw0/view?usp=drive_link

Output:

The Wireshark Network Analyzer - & X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR f@PERE QL >V --FEQQQIE
[W]apply a display Filter ... <Ctrl-/> =-|o
Welcome to Wireshark
Capture
....using this Filter: [[Enter a capture Filter ... ~| Allinterfaces shown -
[EE—n—
any
Loopback: lo
bluetootho
bluetooth-monitor
nflog
nfqueue
dbus-system
dbus-session
® Cisco remote capture: ciscodump .
©) ot i <UL L
@ Random packet generator: randpkt L
® systemd Journal Export: sdjournal
® SSH remote capture: sshdump
L) UDP Listener remote capture: udpdump

Learn
User's Guide - Wiki - Questions and Answers - Mailing Lists
You are running Wireshark 3.6.2 (Git v3.6.2 packaged as 3.6.2-2).

Ready to load or capture No Packets Profile: Default

Capturing from ens33 = @ =
Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Al DIREAQAC I EQQQE
(W]Apply a display filter ... <Ctrl-/> =-je
No. Time Protocol Length Info

Source

Destinati
11

» Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface ens33, id ©
» Ethernet II, Src: VMware_37:21:08 (@0:0c:29:3:21:08), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
+ Address Resolution Protocol (request)

Using tcpdump:

1. Open Terminal:
¢ Open a terminal window on your computer.
2. Run tcpdump:
e Use the tcpdump command to capture network traffic. For example, to capture all traffic on

interface eth(, you can use the following command: sudo tcpdump -i eth(Q -w capture.pcap
Note: -i (interface name), -w (save the captured details in a file specified).

e This command captures traffic and saves it to a file named "capture.pcap."

3. Stop Capturing:

e To stop capturing, press Ctrl + C in the terminal.

4. Analyze Traffic:

e You can use Wireshark to analyze the saved capture file (e.g., capture.pcap) by opening it in

Wireshark.

Output:

B Ubuntu (IDS) - VMware Workstation - 8 % (@ Kalilinux - Mware Workstation
File Edit View VM Tabs Help] v & | © O | = A ~ File Edit View vM Tabs Hep || - & O B
|
Home {4 Ubuntu (IDS) » Kali finux

E] Terminal

Johari@johari-virtual-machine: ~

johari@joharivirtual-machine: ~

setting up gttranslationss-lien (5.15.3-1)

etting up libwiretap12:amd

etting up libgtScoresa:amds

etting up libwireshar

etting up libluas.

Setting up
up
up
up 1
up
up

g up ets . g

setting up qtS-gtk-platformtheme:and6d (5.15

Setting up libgtSmultimedia5:amdéd (5

Setting up libgtSprintsupport5:amdé4 (5.
up libgtsmultimediawidgets5:anded (
up libgtSmultimediagsttools5:amdsd (5.
up libgtSmultimedias-plugin
up libgt5svgs: mdh-\ (r 15
3
up

Processing

Processing for man-db (2

s for shared-mime-info (2.1 :

for mailcap (3 Mmr.ulubuntm\
1ubun(u3;
triggers for hicolor-icon-theme \ 5
° >rocessing triggers for gnome-menus (3.36.0- 1ubunmﬂ
$ iireshark
bod :wuwharl. 18:31:47.5 34 [GUI
efaulting to ’(mp,runtima

L [Capture

[Capture

[Capture -- Fil

Uapture

[GUI - failed to

do tcpdump -1

tcpdump: Listening on ens33, 1ink-type EN16MB (Ethernet), snapsho

To Airart inmut tn thic UM meua tha maiica nnintar incida nr nrace Cel <03

B Ubuntu (IDS) - VMware Workstation

File Edit View VM Tabs Hep || - & O)

Jjohari@jeha

-- QStandardPaths:

Desktop/id

kali@kali: ~

irtual-machine:

DG_RUNTIME_DIR not

apture Start
apture

tarted

Jtmp/wire 333V4MB2.pcap

Capture Stop
Capture stopped.

create compose table

xp2_unit2_tcpdump.pcap
t length 262144 bytes

= 1 T ratiirn tn umiie Fammitar mova tha masica nnintar auteida ar nrace Ctels Al

-8 x @

- File Edit View WM Tabs Hep | v & O)

Kali linux - VMware Workstation

Home [+ Ubuntu (DS)

File Actions Edit View Help

(WApply a display ilter ... <Ctrl-/>

Wireshark - Open Capture File

Look in: [/homeyjohari/Desktop/ids

1 computer _ Name
% exp2_unit-2.pcapng
-J“ha" ™ exp2_yinit2_tcpdump.peap

File pame:

Files of type: All Files

Automatically detect file type

Read filter:

20...18 pea...ile

A EED

Type Date Mt
12/09/.
17...18 peap File 12/09/.

@ cancel
@ Help

1T
Host is up

Learn
User's Guide - Wiki - Questionsand Answers - Mailing Lists
You are running Wireshark 3.6.2 (Git v3.6.2 packaged as 3.6.2-2).

¥ Ready to load or capture

Mo Packets

Nmap done: 1 IP addry

Profile: Default

Ta return to your computer, move the mouse pointer outside or press Ctrl+Alt

OEERBR d ¥ Todirect input to this VM, move the mouse painter inside or press Ctrl+G.

time 19050

Video source:

https://drive.google.com/file/d/1-q5jojtBTtLN5SucsBzt ¢8§BEuuONI1DT/view?usp=drive link

Result: Thus, to Use Wireshark or tcpdump to capture network traffic on the test network Successfully Completed.

https://drive.google.com/file/d/1-q5jojtBTtLN5ucsBzt_c8BEuu0NI1DT/view?usp=drive_link

Experiment No: 3

Analyse captured packets to identify protocols, extract information from headers and identify
any anomalies or suspicious activity.
Aim: Analyse captured packets to identify protocols, extract information from headers and identify
any anomalies or suspicious activity.

Algorithm:

1. Open Wireshark:
e Launch Wireshark on your computer.
2. Open the Packet Capture File:
e (Goto "File" > "Open" and browse to the location of your captured packet file.
e Select the file and click "Open."
3. View Packet List:
e The top pane of Wireshark displays a list of captured packets. This is where you'll start your
analysis.
e Each row represents a single packet, and columns provide summary information about each
packet (e.g., source and destination addresses, protocol, length).
4. Identify Protocols:
e Wireshark automatically categorizes packets by protocol. You can expand protocol categories in
the packet list pane to see specific protocols used in the capture.
5. Select a Packet for Analysis:
e Click on a packet in the list to select it. This will populate the packet details pane below with
information about that specific packet.
6. Extract Information from Headers:
e In the packet details pane, expand the various protocol layers to view specific header information.
e Common information to extract includes source and destination IP addresses, port numbers,
protocol versions, and sequence numbers, depending on the protocol.
7. Apply Filters:
e To focus on specific types of traffic or protocols, use Wireshark's display filters.
e In the display filter field at the top of the screen, enter a filter expression (e.g., "ping" to show
only PING traffic).
e Press "Enter" to apply the filter, and the packet list will update accordingly.
8. Identify Anomalies:

e Look for irregular patterns or anomalies in the captured traffic.

e Pay attention to unexpected or unknown protocols, unusual traffic patterns, repeated connection
attempts, incorrect checksums, and unusually large or small packet sizes.
9. Use Colorization:
e Wireshark provides colorization to highlight packets that match specific criteria. For example,
suspicious packets can be color-coded to stand out.
10. Follow TCP Streams (if applicable):
e Ifyou're analyzing TCP traffic, you can right-click on a TCP packet and select "Follow" > "TCP
Stream" to view the entire conversation between two hosts.
11. Refer to Documentation:
e [fyou encounter unfamiliar protocols or behavior, refer to documentation or online resources to
better understand the expected behavior.
12. Compare with Baseline:
e Ifavailable, compare the captured traffic with a baseline of expected network behavior to identify
deviations.
13. Report and Investigate:
e Ifyou identify anomalies or suspicious activity that could indicate a security threat, report it to

your network security team or follow your organization's incident response procedures.
Video source:

https://drive.google.com/file/d/1KvmWUOfwbSvRMd7il0Gt3tRj35wM1 CR/view?usp=drive link

Output:

@ Ubuntu (IDS) - VMware Workstation - o x
§ - . - [
File Edit View VM Tabs Help || ~ | & @ S OEa-i -
Home T3 Ubuntu (IDS)
Activities £ Wireshark
‘ts - . Wireshark - Protocol Hierarchy Statistics - exp2_unit-2.pcapng b & &
Eile Edit View Go
Adnm ® [Protocl ~ Percent Packets Packets Percent Bytes Bytes Bits/s EndPackets EndBytes End Bits/s
- [Frame 100.0 2083 100.0 140317 17k [0 [
9 [Oe i e - Ethemet 100.0 2083 208 29162 3601 0 0 0 B
- A * Internet Protocol Version 6 0.1 2 0.1 B8O 9 0 o 0 —
* User Datagram Protocol & 0.1 2 0.0 16 1 0 0 0
12623-09- Multicast Domain Name System 0.1 2 0.1 86 10 2 86 10
a 2 2823-09- ~ Internet Protocol Version 4 99.4 2071 29.5 41420 5,115 0 0 0
3 2023-09- = User Datagram Protocol 03 6 0.0 48 5 0 0 0
4 2023-09- Netwark Time Protocol 0.1 2 0.1 96 i8] 2 % 1
5 2623-09- Multicast Domain Name System 01 2 0.1 86 10 2 86 10
6 2823-08- Domain Name System 0.1 2 0.1 86 10 2 86 10
7 2023-99- ~ Transmission Control Protocol 97.7 2035 a7 66929 8265 2022 60732 7,500
8 2023-09- S5H Protocol 0.6 13 4.1 5781 713 13 5781 713
9 2823-09- Internet Control Message Protocol 14 30 14 1920 237 30 1920 237
10 2023-09- Address Resolution Protocol 0.5 10 03 388 a7 10 388 a7
11 2623-09-
o 12 2623-09-
13 2023-09-
14 202300~
» Frame 1: 66 byt
PR + Ethernet 11, sr
LMl ¢ Address Resolut
Sz £ rr r
08 00 86 04
00 00 00 0§ ———
00 00 @a ag Mo dsplayfiter
@Help Copy - | @close |
O 7 exp2_unit-2.pcapng Packets: 2083 - Displayed: 2083 (100.0%) Profile: Default
To return to your computer, move the mouse pointer autside or press Ctri+Alt oaaR5mEd |}

https://drive.google.com/file/d/1KvmWU0fwb5vRMd7iI0Gt3tRj35wM1_CR/view?usp=drive_link

@ Ubuntu (IDS) - VMware Workstation -8 x

File Edit View WM Tabs Help ||~ & O 2 08Ok

{7y Home [% ubuntu (10s)

exp2_unit-2.pcapng

Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AmZODOREQR<CHI>»I-ANSFEQQQE

addr == 10.10.10.129 <XI=Hal)

Channel 2.11 Preferences.

Source Destination Protocol Length Info

11 10.18

5 10.10.10.130

Sequence Number: 1 (relative sequence number)
Sequence Number (raw): @
[Next Sequence Numbe! (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 1996152563

0101 . = Header Length: 20 bytes (5)

» Flags: ugm;(mn ACK)

Gow size scaling factor: -1y{unknown)]
Checksum: Bx57b8 [unverified]
[Checksum Status: Unverified]
Orgess—Bointer; o
+ [Timestamps]
- [SEQ/ACK analysis]

[This is an ACK to the segment in frame: 1433

[The RTT to ACK the segment was: ©.080118238 seconds]

[iRTT: 0.600118238 seconds]

00 6c 29 3f 21 88 80 6c 29 fa 45 8f @8 60 45 80)21)E---E -
)10 80 28 60 6O 40 00 40 06 11 ba Pa da @a 82 fa fa (@@
926 ©a 81 18 b4 bf 9a 00 8@ 60 66 76 fa de b7 50 14 v
O 7 exp2_unit-2.pcapng Packets: 2083 - Displayed: 2067 (99.2%) Profile: Default
To return 1o vour computer. move the meuse peinter outside or press Ctrl 1 Alt. OAARR S«]

Result:

Thus, to Analyse captured packets to identify protocols, extract information from headers and identify

any anomalies or suspicious activity successfully Executed.

UNIT -3
Experiment No: 1
Write a program that reads network traffic data or log files.
Aim: Write a program that reads network traffic data or log files.

Tools Required:

e Python Editor
e pyshark (pip install pyshark)

e scapy (pip install scapy)

Reads Network Traffic
Algorithm:
1. Import the necessary libraries, such as pyshark.
2. Display a prompt to the user to include the ".cap" extension in the output file name.
3. Prompt the user to enter the desired output file name for the PCAP capture.
4. Create a LiveCapture object using the specified output file name.
5. Start capturing network traffic using cap.sniff continuously() with a specified duration or packet

count (e.g., 20 seconds or a certain number of packets).

6. Set up a loop that continues until either the specified duration or packet count is reached or the user
interrupts the program by pressing 'Ctrl+C'.

7. Inside the loop, check if the user wants to stop capturing. If the user enters "yes," break out of the
loop to stop capturing.

8. If the user does not want to stop capturing, continue capturing packets.

9. Handle any exceptions, such as KeyboardInterrupt (triggered by 'Ctrl+C'), and display a message
indicating that the capture was stopped by the user.

10. Once the capture is stopped, close the capture object and save the captured packets to the specified
PCAP file.

Here's a Python code that follows this algorithm:
import pyshark

print("Note: .pcap extension in the output file name")
file name = input("Enter the output file name: ")

cap = pyshark.LiveCapture(output file=file name)
try:

print("Capturing traffic, Press 'Ctrl+C' to stop...")

for packet in cap.sniff _continuously(packet count=20):
a = input("Do you want to stop capturing (yes/no): ").strip().lower()
if a=="yes":
print(""Capture stopped by user.")
break

ardInterrupt:

ped by user.")

TERMINAL PC

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS H:\MITS-Work\karthik ram sir-work\IDS lab\uUnit 3\exp1> &

Note: .pcap extension in the output file name

Enter the output file name: johari.pcap

Capturing traffic, Press 'Ctrl+C' to stop...

Do you want to stop capturing (yes/no): yes

Capture stopped by user.

PS H:\MITS-Work\karthik ram sir-work\IDs lab\unit 3\exp1> [

Mame Date modified Type Size

(=]
)
[m]

johari 13-09-2023 07:50 AM Wireshark capture ... 18

Network Traffic Viewer

Algorithm:

You import the pyshark library.

You ask the user to enter the name of the PCAP file they want to read.

Inside the try block, you attempt to open and read the specified PCAP file using pyshark.FileCapture.
You then iterate through the packets in the file using a for loop and print each packet.

If an exception occurs during this process, you catch it and print an error message.

MRS

Here's a Python code that follows this algorithm:
import pyshark

print("Note: file name has an extention of .pcap")
file_ name = input("Enter file name: ")
try:

capture = pyshark.FileCapture(file_name)
for packet in capture:

print(packet)

except Exception as e:
print(f"Error: {e}")

Output:

PS H:\MITS-Work\karthik ram sir-work\IDS lab\unit 3\exp1> h:; cd

Note: file name has an extention of .pcap
Enter file name: johari.pcap]

DATA
Packet (Length: 56)
Layer NULL
: Family: IP (2)
Layer IP
: = Version: 4
. 8181 = Header Length: 26 bytes (5)
Differentiated Services Field: exee (DSCP: CSe, ECN: Not-ECT)
0000 @0.. = Differentiated Services Codepoint: Default (@)
... ..08 = Explicit Congestion Notification: Not ECN-Capable Transport (@)
Total Length: 52
Identification: @x9287 (37511)
= Flags: @x2, Don't fragment
= Reserved bit: Not set
= Don't fragment: Set
More fragments: Not set
0000 0000 = Fragment Offset: @
Time to Live: 128
Protocol: TCP (6)
Header Checksum: @x@@e@ [validation disabled]
Header checksum status: Unverified
Source Address: 127.0.0.1
Destination Address: 127.8.0.1

e Edit Shell Debug Options Window Help
Python 3.11.3 (tags/v3.11.3:£3909b8, Apr 4 2023, 23:49:59) [MSC v.1934 64 bit (AMD64)] on win32
Type "help”, "copyright", "credits" or "license()" for more information.

>>>
= RESTART: H:\MITS-Work\karthik ram sir-work\IDS_lab\Unit 3\expl\packet viewer.py
Note: file name has an extention of .pcap
Enter file name: johari.pcap
Squeezed text (65 lines)
Squeezed text (83 lines)
Squeezed text (70 lines).
Squeezed text (89 lines).

Squeezed text (65 lines).
Squeezed text (78 lines
Squeezed text (91 lines

Squeezed text (89 line:

)

)
s).
Squeezed text (70 lines).
Squeezed text (89 lines)
Squeezed text (70 lines).
Squeezed text (89 lines)

)
)

Squeezed text (68 lines).

Squeezed text (72 lines).

Squeezed text (87 lines).

Squeezed text (91 lines).

Network log Capturing

Algorithm:

1.

Import Required Modules:

o Import necessary Python modules such as os, datetime, and Scapy's sniff and wrpcap for packet

capture and file operations.

Define Packet Handler Function:
Create a function to handle captured packets (packet handler in this example).
Inside the function:
= Extract relevant information from each packet, such as the timestamp, source IP,
destination IP, protocol, and packet length.
= Format this information into a log entry.
= Append the log entry to a log file (e.g., "network logs.txt").

Main Program:

Check if the log file ("network logs.txt") exists. If not, create it and add an initial header ("Network
Logs:") to the file.

Packet Capture:

Start capturing network packets using Scapy's sniff function.
Specify the packet handler function (packet handler) to process each captured packet.
Use store=False to prevent Scapy from storing packets in memory.

Monitor for a KeyboardInterrupt (Ctrl+C) to gracefully stop the packet capture.

End of Program:

Print a termination message to indicate that the program has finished running.

Running the Script:

Ensure Scapy is installed (pip install scapy).
Save the script to a Python file (e.g., "network logger.py").
Execute the script using python network logger.py.

Here's a Python code that follows this algorithm:

import os
from scapy.all import sniff, wrpcap
from datetime import datetime

packet handler(packet):
timestamp = datetime.now().strftime('%Y -%m-%d %H:%M:%S")
src_ip = packet[0][1].src
dst_ip = packet[0][1].dst
protocol = packet[0][1].name
length = len(packet)

log_entry = f"'[{timestamp| | {src_ip} -> {dst_ip} ({protocol}) | Length: {length} bytes"
with open("network logs.txt", "a") as log_file:
log_file.write(log_entry + "\n")

if name =—" main ":
log file path = "network logs.txt"
if not os.path.exists(log_file path):

with open(log file path, "w") as log file:

log_file.write("Network Logs:\n")
print(""Capturing network packets. Press Ctrl+C to stop.")
try:
sniff(prn=packet handler, store=
except KeyboardInterrupt:

print(""Packet capture stopped. Saving logs to 'network logs.txt'.")

print(""Program terminated.")

Output:

The program will capture network packets in real-time.

For each packet captured, it will extract relevant information and log it to "network logs.txt."

Press Ctrl+C to stop the packet capture.

The log entries in "network logs.txt" will contain detailed information about each captured packet.

A [DLE Shell 3.9.10 - O X

File Edit Shell Debug Options Window Help

Python 3.5%.10 (tags/w3.9.10:f2£f3f53, Jan 17 2022, 15:14:21) [MSC v.19%29% 64 bit (
LMDE4)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.

>>>

==== RESTART: H:/MITS-Work/karthik ram sir-work/IDS lab/Unit 3/expl/test.py ====
Capturing network packets... Press Ctrl+C to stop.

>>

==== RESTART: H:/MITS-Work/karthik ram sir-work/IDS lab/Unit 3/expl/test.py ====
Capturing network packets. Press Ctrl+C to stop.

Program terminated.

>>>

==== RESTART: H:/MITS-Work/karthik ram sir-work/IDS lab/Unit 3/expl/test.py ====
Capturing network packets. Press Ctrl+C to stop.

Program terminated.

>>> |

W

network_logs X +

File Edit View

Network Logs:

[2023-09-16 @7:52:12] 192.168.29.1 -> 224.0.0.1 (IP)

[2023-09-16 ©7:52:13] 192.168.29.1 -> 224.0.8.1 (IP) | Length: 58 bytes

[2023-09-16 ©7:52:13] 192.168.29.1 -»> 224.9.8.1 (IP) | Length: 5@ bytes

[2023-09-16 ©7:52:13] 192.168.29.78 -»> 224.8.0.22 (IP) | Length: 54 bytes

[2023-09-16 ©7:52:13] 192.168.29.78 -»> 224.8.0.22 (IP) | Length: 54 bytes

[2023-09-16 ©7:52:14] 24@85:201:c@35:2e6c:5F3:ba71:69fe:4ea5 -> 2405:201:c035:2ebc::cPa8:1d01 (IPv6) | Length: 96 bytes

[2023-09-16 ©7:52:14] 2485:201:c@35:2e6c:5Ff3:ba71:69fe:4ea5 -> 2405:201:c035:2ebc::cBa8:1dO1 (IPv6) | Length: 96 bytes
|

Length: 50 bytes

[2023-09-16 ©7:52:14] 24@85:201:¢035:2e6C::c@a8:1d0@1 -> 2405:201:c035:2e6¢:5f3:ba7l:69fe:4ea5 (IPvb) Length: 144 bytes
[2023-09-16 87:52:14] 24@05:201:c035:2e6C::ca8:1d@1 -> 2405:201:c035:2e6¢:5f3:ba71:69fe:4ea5 (IPve) Length: 124 bytes
[2023-09-16 ©7:52:14] 2405:201:c035:2e6c:5F3:ba71:69fe:4ea5 -> 2606:4700:%ae5:5e7c:dfcb:c2:aa@e:9087 (IPv6) | Length: 86 bytes
[2023-09-16 ©7:52:14] 24@85:201:c@35:2e6c:5F3:ba71:69fe:4ea5 -> 2405:201:c035:2ebc::cPa8:1d01 (IPv6) | Length: 96 bytes
[2023-09-16 ©7:52:14] 2485:201:c@35:2e6c::c0a8:1d01 -> 2405:201:cB35:2ebc:5Ff3:ba71:69fe:4eaS (IPv6) | Length: 144 bytes
[2023-09-16 ©7:52:14] 24@05:201:c@35:2e6c:5f3:ba71:69fe:4ea5 -> 2405:201:c035:2ebc::cPa8:1d01 (IPv6) | Length: 96 bytes
[2823-09-16 ©7:52:14] 2405:201:c@35:2e6c::c0a8:1d01 -> 2405:201:c035:2e6c:5F3:ba71:69fe:4ea5 (IPve) | Length: 124 bytes
[2023-09-16 ©7:52:14] 2606:4700:%ae5:5e7c:dfcb:c2:aaBe:9887 -> 2405:201:c0835:2e6c:5F3:ba71:69fe:4ea5 (IPv6) | Length: 86 bytes
[2023-09-16 ©7:52:14] 24085:201:c@35:2e6c:5F3:ba71:69fe:4ea5 -> 2606:4700:9%ae5:5e7c:dfc6:c2:aa@e:9887 (IPv6) | Length: 74 bytes
[2023-09-16 @7:52:14] 24085:201:c@35:2e6c:5Ff3:ba71:69fe:4ea5 -> 2606:4700:9ae5:5e7c:dfch:c2:2a0e:9087 (IPv6) | Length: 591 bytes
[2023-09-16 @7:52:14] 24@05:201:c@35:2e6c:5f3:ba71:69fe:4ea5 -> 2405:201:c035:2ebc::cPa8:1d01 (IPv6) | Length: 94 bytes
[2023-09-16 ©7:52:14] 24@05:201:c035:2e6c:5f3:ba71:69fe:4ea5 -> 2405:201:c035:2eb cPa8:1d@1 (IPv6e) | Length: 94 bytes
[2023-09-16 @7:52:14] 24@85:201:c035:2e6c:5f3:ba71:69fe:4ea5 -> 2405:201:c035:2e6 cPaB:1de1 (IPv6) | Length: 98 bytes
[2023-09-16 ©7:52:14] 2485:201:c@35:2e6c:5F3:ba71:69fe:4ea5 -> 2405:201:c035:2ebc::cPa8:1d01 (IPv6) | Length: 98 bytes
|

[2023-09-16 @7:52:14] 2485:201:c035:2e6c::c@a8:1dB1 -> 24085:201:c035:2e6¢:5f3:ba71:69fe:4ea5 (IPv6) Length: 122 bytes
[2023-09-16 ©7:52:14] 2485:201:¢035:2e6C::c@a8:1d@1 -> 24085:201:c035:2eb6¢:5f3:ba71:69fe:4ea5 (IPvb) Length: 118 bytes
[2023-09-16 ©7:52:14] 2606:4700:9ae5:5e7c:dfc6:c2:aaBe:9087 -> 2405:201:c035:2e6c:5F3:ba71:69fe:4ea5 (IPv6) | Length: 74 bytes
[2023-09-16 ©7:52:14] 2405:201:cP35:2e6c:5F3:ba71:69fe:4ea5 -> 2405:201:c035:2e6c::cPa8:1d01 (IPv6) | Length: 94 bytes
[2023-09-16 ©7:52:14] 2405:201:c@35:2e6c:5F3:ba71:69fe:4ea5 -> 2405:201:c035:2e6c::cPa8:1d01 (IPv6) | Length: 94 bytes
[2023-09-16 @7:52:14] 2485:201:c035:2e6c:5f3:ba71:69fe:4ea5 -> 2464:6800:4007:82 2004 (IPv6) | Length: 86 bytes

[2023-09-16 ©7:52:14] 2606:4700:9ae5:5e7c:dfc6:c2:aa@e:9087 -> 2405:201:c035:2e6c:5F3:ba71:69fe:4ea5 (IPv6) | Length: 1434 bytes
[2023-09-16 ©7:52:14] 2405:201:c@35:2e6C::c0a8:1d01 -> 2405:201:c035:2e6c:5F3:ba71:69fe:4ea5 (IPv6) | Length: 110 bytes
[20223-09-16 ©7:52:14] 2405:201:c035:2e6c::cPa8:1dO1 -> 2405:201:c035:2e6¢:5F3:ba71:69fe:4ea5 (IPv6) | Length: 122 bytes
[2023-09-16 @7:52:14] 2606:4700:9ae5:5e7c:dfc6:c2:aa@e:9@87 -> 2405:201:¢0@35:2e6c:5f3:ba71:69fe:4ea5 (IPvo) Length: 233 bytes
[2023-09-16 ©7:52:14] 2606:4700:9ae5:5e7c:dfc6:c2:aa@e:9087 -> 2465:201:¢035:2e6c:5f3:ba71:69fe:4ea5 (IPv6) Length: 1434 bytes
[2023-09-16 ©7:52:14] 2485:201:¢035:2e6c:5f3:ba71:69fe:4ea5 -> 2606:4700:%ae5:5e7c:dfcb:c2: 19087 (IPv6) Length: 74 bytes
[2023-09-16 ©7:52:14] 2405:201:c035:2e6c:5f3:ba71:69fe:4ea5 -> 2606:4700:%ae5:5e7c:dfcb:c2:aa0e:9087 (IPvo) Length: 138 bytes
[2023-09-16 ©7:52:14] 24@5:201:c035:2e6c:5f3:ba71:69fe:4ea5 -> 2606:4700:9%ae5:5e7c:dfcb:c2:aa0e:9087 (IPvo) Length: 244 bytes
[2023-09-16 @7:52:14] 192.168.29.78 -> 8.8.8.8 (IP) | Length: 78 bytes
[2023-09-16 @7:52:14] 192.168.29.78 -> 8.8.8.8 (IP) | Length: 78 bytes

Resource source:

https://drive.google.com/drive/folders/1RZtMP50ZZBOALFhL3 dsn4Ft2 kPYvv4?usp=drive link

Result: Thus, to Write a program that reads network traffic data or log files. Successfully.

https://drive.google.com/drive/folders/1RZtMP50ZZBOALFhL3_dsn4Ft2_kPYvv4?usp=drive_link

Experiment No: 2
IMPLEMENT A PROGRAM TO MANAGE A SIGNATURE DATABASE

Aim: Implement a program to manage a signature database.

Tools Required:

e Jupyter Notebook
e pandas (pip install pandas)
e scapy (pip install scapy)

Resource:

Jupvter Notebook File

(https://drive.google.com/file/d/1-cGXOeED4Jcl7U6171JU9dK 6¢csdqualr/view?usp=drive_link)

Sample .pcap

(_https://drive.google.com/drive/folders/IMg-XPWOIN2itMbGmv7RF6wopMKsVC697?usp=drive_link)

Pdf & html File

(https://drive.google.com/drive/folders/1zuHHbuO4E6fcOvtSRI1CO0QU37s9vP{7 7usp=drive_link)

Algorithm:
1. Import Libraries:

e Import the necessary libraries: ‘pandas’ for data manipulation and ‘scapy’ for reading .pcap files.

2. Process .pcap File (Function: “process pcap(file path)’):

e Read the .pcap file using ‘rdpcap()’ function from the "scapy’ library.

e [terate through each packet in the .pcap file.

e For packets with an "IP" layer:

e [Extract source IP address, destination IP address, and protocol number.

e Add the extracted information to a list.

e Create a DataFrame using "pandas’ containing columns: "Source IP", "Destination IP", and

"Protocol".

e Return the DataFrame for further processing.

3. Define Signature-Based Detection Rules (Function: "detect_attacks(packet df)"):

e Implement detection rules:

https://drive.google.com/file/d/1-cGXOeED4Jcl7U6I7lJU9dK6csdqualr/view?usp=drive_link
https://drive.google.com/drive/folders/1Mg-XPWOiN2itMbGmv7RF6wopMKsVC697?usp=drive_link
https://drive.google.com/drive/folders/1zuHHbuO4E6fcOvtSR9iCO0QU37s9vPf7?usp=drive_link

e Identify SSH attacks by filtering packets with Protocol 6 (TCP) and print the detected SSH attacks.
e Identify HTTP attacks by filtering packets with Protocol 17 (UDP) and print the detected HTTP

attacks.

e Additional rules can be added based on specific use cases.

4. Main Function (Function: "'main()"):

e Specify the path to the UNB ISCX IDS 2012 .pcap file.
e (all "process pcap()” function to extract packet information and create a DataFrame.
e Call ‘detect attacks()" function to apply detection rules on the DataFrame and print detected

attacks.
5. Execution (Condition: 'if name ==" main_":"):

e Execute the ‘'main()" function when the script is run.

Note:

e The program currently focuses on SSH and HTTP traffic detection as per the specified rules.
e Additional rules and more complex logic can be implemented for a more comprehensive intrusion

detection system.

Program:

import pandas as pd
from scapy.all import rdpcap

process_pcap(file path):
packets = rdpcap(file path)
packet list =]

for packet in packets:
if packet.haslayer("IP"):
src_ip = packet["IP"].src
dst_ip = packet["IP"].dst
protocol = packet["IP"].proto
packet list.append((src ip, dst ip, protocol))

df = pd.DataFrame(packet_list, columns=["Source IP", "Destination [P", "Protocol"])
return df

detect_attacks(packet df):

ssh_attacks = packet df[packet df["Protocol"] == 6]

http_attacks = packet df[packet df["Protocol"] == 17]

print("Detected SSH Attacks:")
print(ssh_attacks)
print("\nDetected HTTP Attacks:")
print(http_attacks)

main():

pcap_file |

path = 'testbed-12jun.pcap'

packet df =process pcap(pcap_file path)
detect attacks(packet df)

if name

main()

Output:

Result: Thus, to Implement a program to manage a signature database is Successfully Executed.

==" main "

Detected SSH Attacks:

T "]

245937
245938
245939
245940
245941

Source IP
168.1.181
168.5.122
168.5.122
168.5.122
168.5.122

1592.
192.
1582,
1592.
1592.

97.74.184.281
97.74.184.2081
192.168.4.121
97.74.184.2081
97.74.184.281

Destination IP
192.168.5.122
192.168.1.181
192.168.1.181
192.168.1.181
192.168.1.181

121

121

201

121
121

192.168.4.
192.168.4.
97.74.184.,
192.168.4.
192.168.4.

[239632 rows x 3 columns]

Detected HTTP Attacks:

54
88
89
98
95
245726
245727
245761

245762
245763

Source IP
192.168.4.119
192.168.4.119
192.168.5.122

198.164.38.2
192.168.5.122

192.168.2.1688
192.168.5.122

198.164.38.2
192.168.5.122
192.168.5.122

Destination IP
192.168.4.255
192.168.5.122

198.164.36.2
192.168.5.122
192.168.4.119

192.168.5.122

198.164.28.2
192.168.5.122
192.168.2.108
192.168.2.1688

[6289 rows x 3 columns]

Protocol
6

o Oy O

oy oo Oy -

Protocol
17
17
17
17
17
17
17
17

17
17

UNIT -4

Experiment No: 1

Aim: Remove outliers from a dataset using z-score or modified z-score and perform feature scaling and

normalization on a dataset.
Tools Required:

e Jupyter notebook
e Python packages:
% Pandas (pip install pandas)
< Numpy (pip install numpy)
e Resource:

e Jupyter Notebook File

(https://drive.google.com/file/d/1vACZqj821FqZ3H3qgpXbglL 7RnCNBKNN/view?usp=drive_link)

e Sample dataset

(https://drive.google.com/drive/folders/10CE1Yd9Ww4daprRjPUn1 TW_4Abbb20HB?usp=drive_link)

e Pdf & html File

(https://drive.google.com/drive/folders/1aBh5s45VvWz4eqnDZ9 yAKveP3pq6gAQ?usp=drive_link)

Algorithm:

Step 1: Import the necessary libraries.

Step 2: Load the dataset.

Step 3: Remove outliers using Z-score.

Step 4: Encode categorical variables using one-hot encoding.

Step 5: Separate features and target variable after one-hot encoding.
Step 6: Perform feature scaling using StandardScaler.

Step 7: Perform feature normalization using MinMaxScaler.

Step 8: Display the processed data (optional, for visualization purposes)

https://drive.google.com/file/d/1vACZqj82lFqZ3H3qgpXbglL7RnCNBkNN/view?usp=drive_link
https://drive.google.com/drive/folders/1oCE1Yd9Ww4daprRjPUn1TW_4Abbb20HB?usp=drive_link
https://drive.google.com/drive/folders/1aBh5s45VvWz4eqnDZ9_yAKveP3pq6gAQ?usp=drive_link

Program:

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, MinMaxScaler

data = pd.read csv('kddcup.data 10 percent corrected', header=None)

columns = [

"duration", "protocol _type", "service", "flag", "src_bytes", "dst_bytes", "land",
n n n n nan

"wrong fragment", "urgent", "hot", "num failed logins", "logged in", "num compromised",

"root_shell", "su_attempted", "num _root", "num_file creations", "num_shells",
nn

"num_access_files", "num outbound cmds", "is_host login", "is_guest login",

non rn non rn non

"count", "srv_count", "serror rate", "srv_serror rate", "rerror rate", "srv_rerror rate",

"non rn

"same srv_rate", "diff srv rate", "srv_diff host rate", "dst host count",

"dst_host srv_count”, "dst host same srv rate", "dst host diff srv_rate",

"dst host same src_port rate", "dst host srv_diff host rate", "dst host serror rate",
n

"dst host srv_serror rate", "dst host rerror rate", "dst host srv rerror rate", "attack type"

]

data.columns = columns

data.head()

numerical cols = data.select dtypes(include=[np.number]).columns
z_scores = np.abs((data[numerical cols] - data[numerical cols].mean()) / data[numerical_cols].std())

threshold = 3
outliers = (z_scores > threshold).any(axis=1)

data = data[~outliers]

data_encoded = pd.get dummies(data, columns=['protocol type', 'service', 'flag'])

X encoded = data encoded.drop("attack type", axis=1)
y_encoded = data_encoded|"attack type"]

scaler = StandardScaler()
X scaled = scaler.fit_transform(X_encoded)

min_max_scaler = MinMaxScaler()
X normalized = min max_scaler.fit transform(X scaled)

processed data = pd.DataFrame(X normalized, columns=X encoded.columns)

processed data.head()

Output:

e Display Original dataset.

duration src_bytes dst_bytes land wrong_fragment urgent hot num_failed_logins logged_in num_compromised .. service_vmnet service_whois flag REJ flag RSTO flag RSTR flag SO flag_ S1 flag_S2 flag S3 flag_SF
[} 00 0000100 0013819 00 0.0 00 00 0.0 1.0 00 . 0.0 00 0.0 00 0.0 00 0.0 0.0 0.0 1.0
1 00 0.000099 0021002 00 0.0 00 00 0.0 1.0 00 . 0.0 00 0.0 00 0.0 00 0.0 0.0 0.0 1.0
2 00 0000099 0021002 00 0.0 00 00 0.0 1.0 00 . 0.0 00 00 00 0.0 00 0.0 0.0 0.0 1.0
3 00 0000117 0008455 00 0.0 00 00 0.0 1.0 00 . 0.0 00 0.0 00 0.0 00 0.0 0.0 0.0 1.0
4 00 0000106 0002636 00 0.0 00 00 0.0 1.0 00 . 0.0 00 0.0 00 0.0 00 0.0 0.0 0.0 1.0

5 rows x 114 columns

e Removed outliers from a dataset using z-score

duration protocol_type service flag src_bytes dstbytes land wrong_fragment urgent hot .. dst_host.srv_count dst_host_same_srv_rate dst_host diff srv_rate dst hostsame_src_port_rate dst_host srv_diff host rate dst_host s
[} 0 tcp http SF 181 5450 0 0 o 0 . 9 1.0 0.0 0.11 0.0
1 0 tp http SF 239 48 0 0 0 0 . 19 10 00 0.05 00
2 0 tp http SF 235 13370 0 00 . 29 10 00 003 00
3 0 tp http SF 219 1337 0 0 0 0 . 39 10 00 0.03 00
4 0 tp http SF 217 032 0 0 0 0 . 49 10 00 0.02 00

5 rows x 42 columns

Result: Thus, to remove outliers from a dataset using z-score or modified z-score and perform feature

scaling and normalization on a dataset is Successfully Executed.

UNIT -4

Experiment No: 2

Aim: Apply moving average or exponential smoothing techniques to detect anomalies in a time series dataset.
Tools Required:

e Jupyter notebook
e Python packages:
++ Pandas (pip install pandas)
< Numpy (pip install numpy)
e Resource:

e Jupvter Notebook File

(https://drive.google.com/file/d/1u-vsa9DXoV2CJj1 Efs kKEUQFPSOM2JBT/view?usp=drive_link)

e Sample dataset

(_https://drive.google.com/drive/folders/1Uno8hTLxhcZPVsnkEkr QiXflik-XMbz?usp=drive link)

e Pdf & html File

(_https://drive.google.com/drive/folders/10joSzhsBhAaHjyTaosUgHMXsQjiRap6q?usp=drive link)

Algorithm:

Step 1: Import the necessary libraries.

Step 2: Load the Network Traffic Dataset.

Step 3: Calculate Moving Average

Calculate moving average of the network traffic data using a specified window size (e.g., 10 minutes).
Step 4: Calculate Exponential Smoothing

Calculate exponential smoothing of the network traffic data using a specified smoothing factor (e.g., 0.2).
Step 5: Detect Anomalies using Moving Average

Detect anomalies based on the difference between the actual traffic volume and the moving average. Define

a threshold (e.g., two times the standard deviation) to identify anomalies.

https://drive.google.com/file/d/1u-vsa9DXoV2CJj1Efs_kEUQFPS0M2JBT/view?usp=drive_link
https://drive.google.com/drive/folders/1Uno8hTLxhcZPVsnkEkr_QiXfIik-XMbz?usp=drive_link
https://drive.google.com/drive/folders/1ojoSzhsBhAaHjyTaosUqHMXsQjiRap6q?usp=drive_link

Step 6: Detect Anomalies using Exponential Smoothing

Detect anomalies based on the difference between the actual traffic volume and the exponential smoothing.

Define a threshold (e.g., two times the standard deviation) to identify anomalies.

Step 7: Visualize Results

Plot the original network traffic data, moving average, and exponential smoothing. Highlight detected

anomalies using different colors.

Program:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df =pd.read csv('network traffic.csv', parse dates= , index_col=0)

window_size ="10T"
df'MA'] = df'Traffic'].rolling(window=window_size).mean()

alpha= 0.2
df['Exp Smooth'] = df['Traffic'].ewm(alpha=alpha, adjust=).mean()

ma_std = df['Traffic'].std() * 2
df'MA _Anomaly'] = np.abs(df['Traffic'] - df['MA']) > ma_std

exp_smooth std = df['Traffic'].std() * 2
df'Exp_Smooth Anomaly'] = np.abs(df['Traffic'] - df['Exp Smooth']) > exp smooth std

plt.figure(figsize=(12, 6))

plt.plot(df.index, df['Traffic'], label='Original Traffic Data’)

plt.plot(df.index, df['MA'"], label='Moving Average ({window_size} window)')

plt.plot(df.index, df['Exp Smooth'], label=f'Exponential Smoothing (Alpha={alpha})")
plt.scatter(df.index[df['MA Anomaly']], df[' Traffic'][df['MA Anomaly']], color="red', label="M A Anomaly")
plt.scatter(df.index[df['Exp Smooth Anomaly']], df[' Traffic'|[df['Exp_Smooth Anomaly']], color='green', label="Exp.
Smooth Anomaly")

plt.xlabel('Timestamp")

plt.ylabel('Traffic Volume')

plt.title('Anomaly Detection in Network Traffic')

plt.legend()

Anomaly Detection in Network Traffic

1000 4 —— Original Traffic Data
—— Moving Average (10T window)
—— Exponential Smoothing (Alpha=0.2)
® MA Anomaly
® Exp. Smooth Anomaly
800 -
£
S 600 -
b
=2
E
[l
=
400 -
200 -

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Timestamb

Result: Thus, to apply moving average or exponential smoothing techniques to detect anomalies in a time

series dataset is Successfully Executed.

UNIT -5

Experiment No: 1

Aim: Measure the IDS response time under different traffic loads and analyze the performance metrics.

Tools Required:

e Jupyter notebook
e Python packages:

< Pandas (pip install pandas)
e Resource:

e Jupvter Notebook File

(https://drive.google.com/file/d/1tt9nVwg1O1orZW2HHI9H27z0kZcnl DyGa/view?usp=drive link)

e Sample dataset

(https://drive.google.com/drive/folders/IGNhgY8FYeMMN-8 8 UilZI-hxvn_{3Sb?usp=drive_link)

e Pdf & html File

(https://drive.google.com/drive/folders/IwfEY cuPEPZoulzl7TAY A2WL1RmpUNWmqJ?usp=drive link)

Algorithm:

Step 1: Import Necessary Libraries.

Step 2: Load the Sample Dataset.

Step 3: Train the Random Forest Classifier.
Step 4: Make Predictions on the Test Set.
Step 5: Evaluate the Performance.

Step 6: Interpret the Results.

e The accuracy score represents the proportion of correctly classified instances in the test set.
e The classification report provides detailed metrics such as precision, recall, and F1-score for both

classes (normal and intrusion). It helps you understand the model's performance for each class.

https://drive.google.com/file/d/1tt9nVwg1O1orZW2HH9H27zOkZcnLDyGa/view?usp=drive_link
https://drive.google.com/drive/folders/1GNhgY8FYeMMN-8_8_UilZI-hxvn_f3Sb?usp=drive_link
https://drive.google.com/drive/folders/1wfEYcuPEPZoulzl7AYA2WL1RmpUNWmqJ?usp=drive_link

Program:

import pandas as pd

from sklearn.model selection import train_test split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

data = pd.read_csv("ids_dataset.csv")

X = data.drop('label', axis=1)
y = data['label']

X train, X test, y train, y test = train test split(X, y, test size=0.2, random_state=42)

clf = RandomForestClassifier(random_state=42)

clf.fit(X train, y train)

predictions = clf.predict(X _test)

accuracy = accuracy score(y_test, predictions)
print(f"Accuracy: {accuracy ")

print("Classification Report:")
print(classification report(y test, predictions))

Accuracy: 1.88
Classification Report:
precision recall fl-score support

@.e 1.80 1.008 l1eee6
1.0 1.00 1.00 1594

accuracy 1.08 1268
macro avg : 1288
weighted avg 1.08 1266

Result: Thus, to measure the IDS response time under different traffic loads and analyze the performance

metrics is Successfully Executed.

UNIT -5

Experiment No: 2

Aim: Analyze the IDS alerts generated during detection testing to identify false positives.

Tools Required:

e Jupyter notebook
e Python packages:

< Pandas (pip install pandas)
e Resource:

e Jupvter Notebook File

(https://drive.google.com/file/d/THPX kvbfj80I23hU1_ISP_gqWNH-D6Zn/view?usp=drive_link)

e Sample dataset

(https://drive.google.com/drive/folders/1dkVDDgK816¢cBDNSAyt03XUAcT46Q50gZ ?usp=drive_link)

e Pdf & html File

(_https://drive.google.com/drive/folders/IP9Y3Vx3iDFilTMmNDBSmTMBkcINA5fO1?usp=drive_link)

Algorithm:

Step 1: Get the dataset.

Step 2: Import Required Libraries.
Step 3: Load the Dataset.

e Load the IDS alerts dataset from the CSV file into a Pandas DataFrame.

Step 4: Filter False Positives.

e Filter the DataFrame to identify false positives (where is_intrusion is True).

Step 5: Print False Positives.

e Print the false positives to the Jupyter Notebook output.

Step 6: Visualize Alert Types of False Positives.

e C(Create a bar chart to visualize the distribution of alert types for false positives.

https://drive.google.com/file/d/1HPX_kvbfj8OI23hU1_ISP_gqWNH-D6Zn/view?usp=drive_link
https://drive.google.com/drive/folders/1dkVDDgK8I6cBDN5Ayt03XUAcT46Q5OqZ?usp=drive_link
https://drive.google.com/drive/folders/1P9Y3Vx3iDFilTMmNDBSmTMBkcJNA5fOI?usp=drive_link

Step 7: Run the Notebook.

e Execute the Jupyter Notebook cells one by one. Make sure to have the sample dataset (ids_alerts.csv)

in the same directory as your Jupyter Notebook file.

Program:

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read csv('ids_alerts.csv')

false positives = df[df]'is_intrusion'] ==

print("False Positives:")

print(false_positives)

alert_type counts = false positives['alert type'].value counts()

alert type counts.plot(kind='bar', figsize=(10, 6))

plt.title('Alert Types of False Positives')

plt.xlabel('Alert Type')
plt.ylabel('Count')
plt.show()

Output:

e false positives

False Positives:

GO~ oW

o987
988
L=l
g0z
a97

0d =~ @ =

987
088
%@
992
997

[478

2822-18-25
2822-18-16
2822-18-17
2823-11-82
2823-18-21

2823-18-28
2823-18-30
2823-18-25
2823-18-19
2823-18-23

alert_type
DDos
Malware
DDos
Malware
DDos

Malware
SQL Injection
SQL Injection
Phishing
SQL Injection

13:
13:
13:
13:
13:

13:
13:
13:
13:
13:

timestamp
15.818533
15.818533
15.818533
15.818533
15.818533

35:
35:
35:
35:
35:

15.818533
15.818533
15.818533
15.818533
15.818533

35:
35:
35:
35:
35:

is_intrusion
True
True
True
True
True
True
True
True
True
True

rows ¥ 5 columns]

source_ip
68.93.22.196
1.157.232.285
128.79.175.25
16.128.31.92
53.144.116.118

118.128.237.19
117.221.211.14
179.228.17.57
218.118.92.252
249.56.33.239

destination_ip \

172.28.235.49
238.137.21.184
178.199.45.19
82.34.142.62
31.21.116.12

254,237.153.134

53.25.56.25
34.194.86.181
224.33.227.82
69.39.285.58

e Visualize alert types of false positives.

Alert Types of False Positives

120 7

100 7

80 1

Count

60

20 1

DDosS
Phishing

c
w]
= =]
= o
‘© g
= =
—
o
b

Alert Type

Result: Thus, to analyze the IDS alerts generated during detection testing to identify false positives is

Successfully Executed.

Note all Resource of IDS

(https://drive.google.com/drive/folders/1rt-qFrAc0SevIKEYIIdwIEgIVSNRI70f?usp=drive link)

https://drive.google.com/drive/folders/1rt-qFrAc0SevlKEYlldwlEglV8NRI70f?usp=drive_link

	Network Address Translation (NAT):
	NAT is often used when you want the virtual machine to have internet access but don't necessarily need direct visibility of the virtual machine from other devices on your local network. It's suitable for scenarios where the VM needs outbound connecti...
	Bridged Networking:
	Bridged networking is useful when you want your virtual machine to have its own distinct IP address on the local network, allowing other devices on the network to directly communicate with it. This is commonly used for scenarios where the virtual mach...
	Host-Only Networking:
	Host-Only networking is employed when you want the virtual machine to be isolated from external networks while still allowing communication with the host machine. This can be useful for development and testing environments where you need to keep the v...
	NOTE: You can customize this network configuration according to the use case.
	Configure a virtual network using VMware.
	Algorithm:
	Network Address Translation (NAT):
	NAT is often used when you want the virtual machine to have internet access but don't necessarily need direct visibility of the virtual machine from other devices on your local network. It's suitable for scenarios where the VM needs outbound connecti...
	Bridged Networking:
	Bridged networking is useful when you want your virtual machine to have its own distinct IP address on the local network, allowing other devices on the network to directly communicate with it. This is commonly used for scenarios where the virtual mach...
	Host-Only Networking:
	Host-Only networking is employed when you want the virtual machine to be isolated from external networks while still allowing communication with the host machine. This can be useful for development and testing environments where you need to keep the v...
	NOTE: You can customize this network configuration according to the use case.
	Setting a virtual network using VMware.
	Algorithm:

